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DEVELOPING A STANDARDIZED PERFORMANCE EVALUATION OF VEHICLES WITH 
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ABSTRACT 

Objectives: The project goal was to create an initial set of standardized tests to explore whether they enable the 

ongoing evaluation of automated driving features as they evolve over time. These tests focused on situations that 

were representative of several daily driving scenarios as encountered by lower-level automated features, often 

called Advanced Driver Assistance Systems (ADAS), while looking forward to higher levels of automation as new 

systems are deployed. 

Methods: The research project initially gathered information through a review of existing literature about ADASs 

and current test procedures. Thereafter, a focus group of industry experts was convened for additional insights and 

feedback. With this background, the research team developed a series of tests designed to evaluate a variety of 

automated driving features in currently available implementations and anticipated future variants. Key ADAS 

available on current production vehicles include adaptive cruise control (ACC), lane keep assist (LKA), and 

automatic emergency braking (AEB). Seven of the most automated production vehicles available in 2018 from six 

manufacturers were subjected to a series of standardized tests that were performed on a closed test track 

environment to assess the vehicle capabilities and limitations of the automated driving systems’ operational 

domains.  

Results: Considerable performance variability was observed between different vehicle manufacturers and within a 

single vehicle model across repeated trials and multiple replications. In addition, there were specific roadway 

characteristics that significantly impacted performance. 

Conclusions: The results indicate that standardized testing can assist researchers in determining the current 

capabilities of vehicles with automated driving features. The research team suggests continuing to improve and 

expand standardized testing of automated driving features and to work toward industry consensus of a robust 

evaluation mechanism that may play a key role in the conformance of future automated-vehicle systems. 
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INTRODUCTION 

Vehicles with automated driving features are becoming more prevalent as manufacturers and consumers understand 

the need for safer and more convenient modes of transportation. However, not all automated features are the same. 

There are different levels of automated system capabilities, ranging from readily available vehicles with Advanced 

Driver Assistance Systems (ADAS) through the envisioned, fully automated vehicles of the future. The Society of 

Automotive Engineers (SAE) has published a Recommended Practice that categorizes these levels of automation 

within vehicles [1]. Although higher levels of automation for vehicles are on the horizon, currently the most widely 

available levels of automation are Level 1 (L1) and Level 2 (L2). If appropriately equipped, these vehicles offer 

driver assistance and active safety features, yet still require full-time driver engagement and monitoring of the 

systems and driving environment. Features of interest in these production vehicles include those that automate 

lateral and longitudinal control (e.g., adaptive cruise control [ACC], automatic emergency braking [AEB], and lane 

keep assist [LKA]). Although these systems fall under the same L2 distinction, ACC and LKA features are engaged 

manually by the driver and provide continuous vehicle control until they are disengaged. AEB systems are available 

without driver input, triggering when the system senses hard braking is required to avoid an impending collision.  

 

The near-term goal of this project was to develop and evaluate an initial set of standardized test procedures that 

vehicles equipped with automated driving features could undergo to compare capabilities and limitations across 

different implementations of automated technologies. In the longer term, this project will provide a basis for future 

automated-vehicle testing and gather evidence to help researchers determine the value of standardized testing as part 

of an automated-vehicle conformance process. Using Virginia Tech Transportation Institute (VTTI) vehicles 

equipped with automated driving features (i.e., ACC, LKA, and AEB), this initial project focused on answering two 

research questions: 

1. What testing should be conducted to evaluate both current and forthcoming capabilities of vehicles with 

automated driving features?  

2. How do currently available vehicles with automated driving features perform under the proposed 

standardized set of evaluations? 

Minimal previous research has been reported in the area of automated feature testing, with most of the research 

focusing on theory or examining extreme edge-case scenarios [2, 3, 4]. In addition, emphasis has been placed on 

testing and developing standardized testing protocols for singular automated systems but not a broader automated 

feature set [5, 6, 7]. Until recently, there have been no previous studies evaluating the capabilities of current 

automated driving features in routine, daily driving scenarios [8, 9].   

 

METHODS 

The following section summarizes the methods employed during this project, with a focus on the scenarios under 

evaluation. Scenarios were inspired by literature reviews, real-world driving events gathered through reviews of 

media reports, and current experimentation conducted with these types of vehicles [10]. Through literature and 

media reviews, the research team identified current complexities of automated feature testing, such as the need for 
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elaborate test setups [11], uncertainties and variability of real-world driving [12], safety concerns associated with 

physical vehicle testing [13], and real-world scenarios in which vehicles with automated features typically fail or 

experience difficulty. Vehicle owner’s manuals were consulted during development to gain better understanding of 

the operational design domain (ODD) of specific automated driving features. Test procedures were designed and 

theoretically validated in collaboration with a focus group of automated- and connected-vehicle experts at VTTI, 

where safety-critical automated systems were highlighted, current automated-vehicle testing practices were 

discussed, and preliminary testing scenarios were reviewed.  

 

Testing of finalized scenarios occurred on the Virginia Smart Roads Highway and Surface Street sections, both of 

which are closed test tracks located at VTTI. The Highway portion of the Smart Roads is approximately 2.2 miles 

long and built to Federal Highway Administration specifications. The road features multiple lanes, two high-speed 

turnarounds, and numerous opportunities for customization to create various real-world scenarios. The Surface 

Street is a multi-use test facility that specifically allows for more city-like driving, with multiple turns, intersections, 

and turnaround points. This section also has adjustable lane markings, allowing complete customization for 

replication of a wide array of urban scenarios. 

 

Testing involved varying relevant factors in each scenario (e.g., speed, obstruction placement, size of obstacle) to 

cover multiple use cases for automated driving features. Three replications of each trial were conducted to evaluate 

the consistency of system performance. To minimize variance due to operator factors, tests were performed using 

four highly skilled drivers, each with experience testing advanced-vehicle features. These drivers were given 

instructions prior to each test regarding execution strategies and takeover procedures; these instructions can be found 

in Appendix A. Although these procedures were established to increase safety and minimize variation, the study 

drivers had ample experience conducting advanced-vehicle tests with automated features. Therefore, decisions to 

swerve, brake, or abort a trial were ultimately made at their discretion. 

 

Study Vehicles 

To assess the value of standardized testing, a variety of on-road tests were developed for a fleet of vehicles currently 

available on the market and equipped with automated driving features. A summary outlining the study vehicles used 

and their associated automated technology packages can be found in Table 1. The ODD speeds for each feature 

tested can be found in Appendix B.  

 

Table 1: Vehicles Used in the Study 

Vehicle Make/Model  Automated System Package Included in 
Vehicle  

2015 Infiniti Q50 3.7 AWD Premium  Technology, Navigation, and Deluxe Touring  
2015 Tesla Model S P90D AWD  Autopilot Convenience  
2016 Mercedes-Benz E350 Sedan  Premium Package, Driver Assistance  
2016 Volvo XC90 T6 AWD R-Design  Convenience  
2017 Audi Q7 Premium Plus 3.0 TFSI Quattro  Driver Assistance  
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2018 Cadillac CT6 AWD 3.6L Engine Premium Luxury Driver Awareness and Convenience, Super 
Cruise  

2018 Tesla Model X P100D AWD Autopilot Convenience 

 

Test Procedures and Scenarios 

Detailed documentation was captured by researchers for each test, recording vehicle behavior, test parameters, and 

general observations regarding performance of the automated driving features. All drivers maintained 

communication throughout the entirety of tests via two-way radios. In addition, objective performance variables 

such as speed, acceleration, and GPS location were collected using VTTI data acquisition systems (DAS) installed 

in the test vehicles. Detailed analyses of these additional data sources are to be performed in a future activity. 

Scenarios are described in the section below, with the parameters varied for each trial shown in Table 2. All testing 

used a full factorial design method to vary parameters across scenarios.  

 

Table 2: Test Parameters 

ACC Curve      
Curve Radius (ft) 205 108 301 295  
Lead Vehicle Speed (mph) 15 20 25   
Test Vehicle ACC Set Speed (mph) 20 25 30   
Headway Setting* Long Medium          
ACC Cut-In      
Lead Vehicle Speed (mph) 30 40 50   
Test Vehicle Speed (mph) 35 45 55   
Cut-In Vehicle Speed (mph) 30 40 50   
Headway Setting* Long  Medium          
ACC Cut-Out & Reveal      
Cut-Out Vehicle Speed 20 30 40   
Test Vehicle Speed 25 35 45   
Revealed Vehicle Speed 0 10 15   
Headway Setting* Long  Medium          
ACC Stop & Go      
Headway Setting* Long Medium          
AEB Obstacle      
Test Vehicle Speed (mph) 25 35 45   

Obstacle Type 
Static large 
pedestrian 

Static small 
pedestrian 

Dynamic large 
pedestrian 

Dynamic small 
pedestrian Foam car       

Lane Obstruction      
Test Vehicle Speed (mph) 25 35 45   
Obstacle Type Foam car Barrel cone    
Headway Setting* Long Medium Short         
Lane Shift      
Test Vehicle Speed (mph) 25 35 45   
Lane Shift Severity Half lane width Full lane width    
Headway Setting* Long Medium Short   
*Attempts were also made to reduce variability between the different headway settings of the vehicles, which, within the 
fleet, ranged from 3-7 different modes.  
Through vehicle manuals, research, and physical testing, each mode’s following distance time was determined, and three 
variations—long (following distance of ~3s), medium (following distance of ~2s), and short (following distance of ~1s)— 
were identified for use during testing. 
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The following test scenarios were evaluated: 

ACC Curve: The ACC Curve test evaluated the effectiveness of ACC and LKA features when exposed to curved 

roadways of varying radii. In this evaluation, the test vehicles were set to a specified ACC speed (i.e., 5 mph higher 

than lead vehicle speed to maintain coupling) and headway while following a lead vehicle traveling at a constant 

speed around curves of four different radii and geometries on the Highway portion of the Smart Roads, as seen in 

Figure 1.  

 

 
Figure 1: ACC Curve scenario diagram. 

 

Researchers examined whether the test vehicle tracked the lead vehicle throughout the entire curve either by visual 

indicators provided on the factory human-machine interface (HMI) display, through surges in test vehicle speed, or 

if the test vehicles ceased tracking the lead vehicle and instead began to accelerate, requiring the test vehicle driver 

to intervene.  

 

ACC Cut-In: The ACC Cut-In test was used to evaluate how each ACC implementation reacted to a new vehicle 

merging into the existing gap between the test and lead vehicles. This test was conducted on approximately one mile 

of straight road on the Highway portion of the Smart Roads. During the procedure, as seen in Figure 2, the ACC of 

each test vehicle was set to a specific speed and headway following a lead vehicle, while a second vehicle (“cut-in 

vehicle”) traveled in the adjacent lane in the same direction. Once the lead and test vehicles reached steady state 

(i.e., both were holding the constant set speed), the cut-in vehicle began to merge between the test vehicle and the 

lead vehicle.  
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Figure 2: ACC Cut-In scenario diagram. 

 

The cut-in vehicle held a constant speed while centered over the lane line, allowing trained experimenters in the test 

vehicles to examine the behavior of the test vehicles with the addition of the cut-in vehicle.  

 

ACC Cut-Out and Reveal: The ACC Cut-Out test was used to evaluate the reaction of each test vehicle to a 

situation where the established lead vehicle changed lanes, revealing a new lead vehicle that, in some cases, was 

traveling at a drastically slower speed. The original lead vehicle (the “cut-out” vehicle) was followed by the test 

vehicle that was set to a specified ACC speed (i.e., 5 mph higher than the lead vehicle speed) and headway. 

Approximately 0.25 miles ahead of the lead and test vehicles, another vehicle (the “revealed” vehicle) was traveling 

at a specified speed or stationary. The test vehicle and cut-out vehicle traveled toward the revealed vehicle in the 

same lane; when the pair was approaching, the lead vehicle changed lanes when the time-to-collision (TTC) between 

the lead vehicle and reveal vehicle was approximately 3s, thus revealing the slower moving vehicle, demonstrated in 

Figure 3.  

 

 
Figure 3: ACC Cut-Out and Reveal  scenario diagram. 

 

Researchers made detailed notes of how each ACC implementation reacted to this newly revealed, slower-moving 

or stopped lead vehicle.  
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ACC Stop and Go: The ACC Stop and Go test was used to examine the ability of each test vehicle to react to a lead 

vehicle that was frequently changing speeds. The scenario, shown in Figure 4, begun with the test vehicle positioned 

behind two lead vehicles on the Highway section of the Smart Roads, with ACC engaged and set to a speed of 35 

mph. At the start of the test, the lead vehicles both accelerated to 30 mph while maintaining a 2s following distance 

between each other. Once the lead vehicles reached steady state, an in-vehicle researcher cued the lead vehicle 

drivers to decelerate to 15 mph. Once all vehicles reached steady state after deceleration, the lead vehicle drivers 

accelerated to 25 mph until steady state was again achieved. Finally, the lead vehicle drivers decelerated to a stop. 

After all vehicles were stationary for 3s, the lead vehicle drivers accelerated back to 30 mph, with the test vehicle 

following. All acceleration and deceleration performed by the drivers were representative of levels anticipated in 

typical stop-and-go traffic, or approximately 0.2g - 0.3g [14].   

 

 
Figure 4: ACC Stop and Go scenario diagram. 

 

Researchers took note of how each ACC implementation performed in terms of matching the changing speeds and 

adjusting following distances once regaining an appropriate following position.  

 

LKA Inattentiveness: The LKA Inattentiveness test evaluated the reaction of the test vehicle to a driver taking his 

or her hands off of the steering wheel while ACC and LKA were engaged. At specified points along the road, 

drivers would remove their hands from the steering wheel and hover them over the wheel as the vehicle maintained 

lane centering and speed. Researchers recorded how long it took the vehicle to react to the lack of driver input and 

what types of warnings were presented (i.e., visual, auditory, haptic). If the ACC disengaged automatically due to 

the lack of driver input, the test driver was instructed to allow the vehicle to drift out of the lane by one car’s width, 

to determine if any sort of preventative measures to resist the lane drift would be taken by the vehicle. However, 

since observations were more informative and not performance-based, the results from this scenario are not 

discussed in further detail. 

 

AEB Obstacle: The aim of this test was to determine the AEB capabilities of each test vehicle when presented with 

a variety of soft-target objects in the driving path.  
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Expert drivers drove the test vehicles at a specified speed toward a stationary or dynamic obstacle, seen in Figure 5, 

which was set up directly in (static) or moved into (dynamic) the center of the traveling lane by an on-road 

researcher. The dynamic obstacles were controlled by an additional on-road researcher using a robotic, remote 

evasive maneuvering device (i.e., a small robotic platform constructed by VTTI).  

 

 
Figure 5: AEB Obstacle scenario diagram. 

 

When approaching the obstacle at the specified trial speed, the driver was prepared to perform an evasive maneuver 

in case the system did not recognize the hazard and brake accordingly. Researchers observed whether or not the 

vehicle reacted to the obstacle in the driving path, either by indication of the dashboard HMI display or by the 

application of automatic braking.  

 

Lane Obstruction: Similar to the AEB Obstacle test, this test aimed to determine the ability of each test vehicle to 

recognize stationary obstacles in the driving path and react accordingly. However, in this case, the ACC capabilities 

of each test vehicle were also examined to determine if the vehicle would attempt to mitigate or avoid the obstacle.  

 

In this test, the obstacle was only partway in the lane rather than fully centered, shown in Figure 6, simulating an 

obstacle on the shoulder of a road protruding into the traveling lane. A single standard barrel cone or strikable soft 

car was used as stationary obstacles for this test. Test drivers drove toward the obstacle at a specified ACC speed 

and headway setting. When approaching the obstacle while maintaining the desired speed for each trial, the driver 

was prepared to perform an evasive maneuver in case the system did not recognize the hazard and brake 

accordingly. Similarly to the AEB Obstacle test, researchers recorded whether the vehicle reacted to the obstacle in 

the driving path either by the indication on the dashboard HMI display or by the adjustment of speed by ACC.  
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Figure 6: Lane Obstruction scenario diagram. 

 

Lane Shift: This test was inspired by several videos that were publicly released prior to the current study; these 

videos showed vehicles with lower levels of automated driving features colliding into temporary barriers set up in 

construction zones indicating lane shifts. The test examined the ACC system capabilities of each test vehicle in a 

barrel cone barrier lane-shift scenario. Both full- and half-lane shifts across a standard ~10-foot lane were set up 

according to standards [15]. Cones were placed approximately 10 feet apart to create a smooth lane transition typical 

of work zones. The setup for this scenario can be seen in Figure 7 below. 

 

 
Figure 7: Lane Shift scenario diagram. 

 

Data Analysis 

As the primary objective of this study was to develop draft standardized testing procedures that could be replicated 

with minimal to no vehicle instrumentation, data obtained and analyzed from testing were largely qualitative. 

Narratives of vehicle reactions and general observations about tests were recorded by in-vehicle documenters during 

trials. To convert the qualitative results into quantitative data for analysis, coding schemes were developed based on 

vehicle performance in each test. These coding schemes categorized whether the vehicle had no reaction, issued 

auditory/visual alerts, attempted mitigation, or demonstrated complete avoidance and/or expected reactions to 
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different obstacles or a changing driving landscape, as seen in Appendix C. It is important to note that these codes 

are based on the performance of the vehicles within the specific tests and are not directly related to regulations, 

standards, or crash data. When possible, future work should attempt to refine the connection between performance 

surrogate measures, such as those captured herein, and crash data for automated driving features. 

 

Referencing the specific code scheme assigned to each test, two researchers independently assigned codes to 

individual results of each test trial. As needed, video captured during the experiments was reviewed to confirm the 

observations made during the tests. By using inter-rater reliability methods, it was found that, in general, the 

researchers’ results were highly consistent; occasional discrepancies in code assignments between both researchers 

were discussed and resolved. If a resolution was not achieved between the coding researchers, additional team 

members were consulted until a final decision was made.  

 

Based on the quantitative data obtained, average performance scores for each test vehicle and for each test 

replication were derived by computing the mean score for each test trial. These scores represent the levels at which 

the vehicles tended to identify and respond to the variations of stimuli during testing. The higher the performance 

score, the more consistently vehicles exhibited appropriate behavior. Full details of these scores are available in 

Appendix D. The average performance scores for each vehicle, across all executed trials, provided the basis for the 

analysis of variance (ANOVA) testing.  

 

Single-factor ANOVA tests with an alpha value of 0.05 were performed to determine statistically significant 

differences in performance across the examined feature implementations. If the ANOVA indicated that there was 

statistical significance, two tailed t-tests assuming equal variances were performed to determine which variable had 

the most significant impact on vehicle performance. Statistical analysis results, including ANOVAs and t-tests, can 

be found in Appendix E.  

 

RESULTS 

To reduce bias during data analysis and to protect manufacturer identity in publication, vehicle make and model 

information were removed and were represented numerically in the results. The testing generated a sizeable data set; 

therefore, the results presented below represent only a snapshot of the total data obtained through testing. However, 

the results presented herein demonstrate the greatest differentiation between vehicle capabilities. Complete results 

will be available through the Safety through Disruption National University Transportation Center Report #VTTI 

00-20.  
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Curve Radius Influenced Test Vehicle Following Performance while ACC was Engaged  

 
Figure 8: Average vehicle performance during ACC Curve test (out of a maximum performance score of 3), 

considering curve radius. 

 

Statistical analyses indicated that the different curve radii had significant impacts on vehicle performance. With one 

exception, ACC implementations performed slightly worse than what was seen in the overall averages while 

traveling around the tightest curve radius (108-foot radius); this was the only curve where driver intervention was 

needed. Since the angle of the curve was tighter than the other curves, it is hypothesized that typical sensor and 

camera field of views were unable to track the lead vehicle throughout its duration [16, 17].  

 

Headway Setting Affected Test Vehicle Following Performance while ACC was Engaged 

Although only by a small margin, all ACC implementations consistently performed better with the medium headway 

setting engaged versus a long headway. This performance difference is seen particularly in the ACC Curve test, 

where the different headway settings produced statistically significant results. A medium ACC headway setting 

allowed the test vehicle to follow the lead vehicle more closely, relative to a long headway. As such, the lead vehicle 

stayed in the sensor and camera field of view for longer around curves and often throughout the full curve traversal, 

thus improving performance [16, 17]. Due to safety restrictions, the lowest headway setting was not tested. 

However, it is hypothesized that a trend of improved performance due to a closer following distance would likely 

continue. 
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Test Vehicle ACC Performance was Affected when a Revealed Vehicle was Stationary 

 
Figure 9: Vehicle performance scores (out of a maximum score of 5) when exposed to different revealed vehicle 

speeds during the ACC Cut-Out & Reveal test.  

 

While examining the ACC Cut-Out test data, the only t-tests that produced significant results were for scenarios 

wherein the revealed vehicle was stationary (0 mph), specifically when the test vehicles were approaching at 30 

mph. Therefore, it can be concluded that the revealed vehicle speed was the main factor that influenced test vehicle 

performance during the cut-out/reveal events. Qualitatively, in trials where the revealed vehicle was traveling at 

speeds of 15 mph and 10 mph, test vehicles performed in alignment with researchers’ initial expectations by 

consistently recognizing and responding to the new lead vehicle. Although trials where the revealed vehicle was 

stationary had low performance scores relative to the other trials, all test vehicles still responded to the obstacle in 

the driving path. A likely explanation for these observations is that current ACC is not specifically designed to 

handle larger speed delta situations, particularly those involving stopped and newly acquired lead vehicles. This type 

of scenario would be better suited for an evaluation of AEB systems, which some test vehicles initiated before driver 

intervention. 

 

Test Vehicles Were Unable to Identify Barrel Cones as Obstacles 

Although barrel cones have a sharp color contrast against the background environment and reflectivity strips, which 

should theoretically make them an easy target to identify by camera and some radar solutions, none of the test 

vehicles reacted to them during the Lane Obstruction test, and nearly none identified them during the Lane Shift test. 

This response absence may reflect the current ACC capabilities of the vehicles, which may not be specifically 

designed to handle situations with stationary objects or work zone barriers. These results indicate that none of the 

current automated perception systems are equipped to detect smaller, potentially safety-critical obstacles, which 
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could pose threats especially in work zones or emergency situations – a key requirement for high levels of future 

automated systems.  

 

Test Vehicles Exhibited Inconsistent Response Type and Frequency to Identical Conditions 

Test vehicles demonstrated inconsistent performance both across the vehicle fleet and within a single vehicle across 

multiple trials. Poor vehicle performance was often noted during tests where stationary obstacles were present. As 

mentioned previously, limitations of current ACC systems may contribute to this degraded performance. However, 

all test vehicles were equipped with AEB systems, so it is surprising, if not a bit troublesome, that most of them did 

not react well to these targets at close proximity, thus requiring evasive steering input from expert drivers. One 

possible explanation for the poor response could be the targets that were selected, since both the dynamic pedestrian 

and foam car targets have not undergone extensive validation. However, both objects were recognized as hazards by 

some vehicles.  

 

Test vehicles also had trouble responding appropriately to the ACC Cut-In test. For some vehicles, the test vehicle 

did not detect the merging vehicle and would not adjust speed or following distance accordingly. Many ACC system 

limits are exceeded by this scenario, and this variability could also point to potential issues with limited field of view 

of both the cameras and sensors on test vehicles. However, the fact that some vehicles performed well under this 

condition should be noted, although poor performance should be expected in general.  

 

In the LKA Inattentiveness test, the time it took for auditory and/or visual warnings to appear after the driver 

removed his or her hands ranged widely across vehicles. Some vehicles consistently warned drivers at a specific 

time interval; for other vehicles, the warning time varied, and for one vehicle, there was no warning before ACC and 

LKA disengagement.  

 

DISCUSSION 

This work supports a growing body of knowledge toward creating standardized tests to evaluate automated driving 

features, from the ADAS of today into the highly automated vehicle of tomorrow. In addition, this work represents 

one of the first sets of real-world testing scenarios for evaluation of vehicles with automated driving features, where 

prior work has focused on smaller scale testing, simpler testing, or testing in virtual environments.  

 

Across the results presented, researchers made the following general observations: 

• Test vehicles exhibited expected and more consistent performance in scenarios that simulated higher speeds 

(i.e., highway scenarios rather than lower speed urban scenarios). 

• Many of the test vehicles exhibited a response (e.g., warning lights/sounds) to obstacles in their path but 

did not always implement a crash avoidance strategy. 

• Large inconsistencies in test vehicle performance occurred within a vehicle platform across repeated trials 

and across the fleet evaluated. 
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The findings are important because they demonstrate that vehicles with currently available automated driving 

features exhibit large variations in capabilities. Additionally, results indicate control scenario testing can provide 

means to evaluate improvements in automated capabilities as systems are refined (e.g., measures should indicate 

more favorable and consistent outcomes as systems improve). For vehicles with automated features to be trusted and 

accepted by users, and to leverage these features as building blocks for higher levels of automation, it is critical that 

their performance be consistent and predictable.  

 

The high variability in vehicle performance and poor interactions with certain test conditions could be due to the 

automated systems’ ODD limitations. For example, current ACC and LKA systems are not typically designed to 

interact with stationary objects, even though it is a possibility in real-world driving. In addition, certain obstacles 

used during testing may not be within the systems’ machine-vision capabilities. Current ADASs also expect the 

driver to be engaged in the driving task at all times. In this study, although the driver was focused on the road during 

every test, he or she was instructed to not perform any sort of corrective maneuver or intervention until ~3s TTC, 

which may have resulted in the appearance of poorer performance by the vehicles as they are not designed to 

completely take over driving tasks. This provides a vehicle performance benchmark of currently available systems, 

with the expectation that future implementations will offer continuous improvement across these scenarios.   

 

Through this project, a framework of standardized tests was developed to evaluate the capabilities of automated 

driving features in real-world scenarios. In addition to the basic testing framework, researchers were able to use 

these tests to create baseline results for current production vehicles and to gain a better understanding of the 

discrepancies and variations of features. Due to the high variability witnessed within tests, this study also helps 

confirm the need for standardized testing of automated driving features across all levels. Most importantly, this 

study provides evidence that structured scenario testing of automated driving features may be used to detect 

differences between vehicle capabilities. While the authors believe considerably more work is needed to develop a 

robust set of industry standardized testing, this study provides a base strategy for simple systematic evaluation of 

automated driving features as performance improves over time. Such controlled testing may be part of a future 

conformance testing process when paired with additional robust methods. 

 

Overall, the work performed herein clearly indicates support for larger, more comprehensive research into the 

expansion and refinement of standardized test procedures for automated driving features. It also indicates that 

observational methods that require minimal vehicle instrumentation will provide value toward assessing automated 

driving features. Such observational methods could be bolstered by additional objective measures collected with 

higher-precision data recording devices. 
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DATA AVAILABILITY STATEMENT 

Raw data, both qualitative and quantitative, are available upon request. Vehicles will remain coded within the raw 

data set for privacy reasons. Overall raw scores can be found in Appendix D.  
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APPENDICES  

A. Driver Performance Expectations 

Test Driver Expectations 

ACC Curve • During curves, pay close attention to the vehicle path and any sensors that are tracking the lead 
vehicle. 

• Monitor lead vehicle sensing display (if available) and make note if the test vehicle ceases to 
track the lead vehicle at any point during the curve.  

• Keep hands on the wheel and prepare to take over if the vehicle begins to deviate from the curve 
path.  

• Swerve or brake when time to collision (TTC) is ~3s. 

ACC Cut-In • Pay close attention to how the vehicle reacts to the cut-in vehicle. If test vehicle does not sense 
the cut-in vehicle, be prepared to brake or correct steering. 

• Monitor lead vehicle sensing display (if available) and make note if the test vehicle recognizes 
the new lead vehicle. 

• Keep hands on the wheel and prepare to brake or take over if the test vehicle gets too close to the 
lead vehicle. 

• Swerve or brake when time to collision (TTC) is ~3s. 

ACC Cut-Out & 
Reveal 

• Pay close attention to how the vehicle reacts to revealed vehicle. If test vehicle does not sense 
the revealed vehicle, be prepared to brake or swerve to avoid collision.  

• Prepare to brake hard or swerve in the event that the revealed vehicle is not sensed.    
• Monitor speed and following distance and intervene if they deviate from set parameters. 
• Swerve or brake when time to collision (TTC) is ~3s. 

ACC Stop & Go • Pay close attention to how the vehicle reacts to the changing lead vehicle.  
• If test vehicle does not sense the change of speed, be prepared to brake or swerve to avoid 

collision.  
• Driver intervention needed if:  

o Test vehicle stops following lead vehicles and disengages ACC   
o Test vehicle does not brake within a safe distance of the lead vehicles  
o Test vehicle does not slow down when approaching a slower moving/stopped vehicle  

• Swerve or brake when time to collision (TTC) is ~3s. 

AEB Obstacle • If test vehicle does not sense the obstacle in the driving path, be prepared to brake hard.  
• Remember that there is a researcher on the side of the road controlling the HV-REMO device: 

o If swerving is necessary, swerve away from the shoulder 
o Try to brake instead of swerve  

• Swerve or brake when time to collision (TTC) is ~2s. 

Lane Obstruction • Driver be ready to perform an evasive maneuver in the event the vehicle fails to react to the 
obstacle.  

• Pay close attention to how the vehicle reacts to the obstacle.  
• If vehicle fails to detect object, prepare to engage brakes or swerve to adjacent lane to avoid it. 
• Swerve or brake when time to collision (TTC) is ~2s. 

Lane Shift • Pay close attention to how the vehicle reacts to the lane shift.  
• Approach cones of lane shift ready to swerve or brake. 
• Driver needs to intervene if the test vehicle fails to recognize the cones and is not able to 

recognize them even in correct positioning. 
• If there is an on-road researcher present and swerving is necessary, swerve away from the 

shoulder. Try to brake instead of swerve. 
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B. Operational Design Domain (ODD) of ADAS Features 

Vehicle Adaptive 
Cruise Control 

ODD 

Lane Keeping 
Assist ODD 

Automatic 
Emergency 

Braking ODD 
(Moving objects) 

Automatic Emergency 
Braking ODD 

(Stationary objects) 

2015 Infiniti Q50 20 mph-90 mph 45 mph-90 mph 0 mph-45 mph 0 mph-45 mph 
2015 Tesla Model S 18 mph-90 mph 18 mph-90 mph 7 mph-90 mph 7 mph-90 mph 

2016 Mercedes-Benz E350 0 mph-125 mph 0 mph-125 mph 18 mph-155 mph 18 mph-45 mph 
2016 Volvo XC90 10 mph-80 mph 40 mph-90 mph 0 mph-50 mph 0 mph-50 mph 

2017 Audi Q7 20 mph-95 mph 40 mph-90 mph 20 mph-40 mph 20 mph-40 mph 
2018 Cadillac CT6 16 mph-90 mph 37 mph-90 mph 2 mph-50 mph 2 mph-50 mph 

2018 Tesla Model X 18 mph-90 mph 18 mph-90 mph 7 mph-90 mph 7 mph-90 mph 

 

 

C. Coding Scheme Examples 

ACC Curve, ACC Cut-In, ACC Stop and Go: Results Key  
Value Description Example 

3 No driver intervention needed 
No false positives or failure of system 

Test vehicle adjusts following distance/brakes 
according to lead vehicle speed. 

2 Intermittent system failure 
No driver intervention needed 

Test vehicle briefly/intermittently loses track of lead 
vehicle but regains tracking before the vehicle begins 
to deviate from the curve or .decreases following 
distance drastically 

1 Driver required to input lateral or longitudinal control 
to avoid collision 

Test vehicle loses track of lead vehicle completely 
and does not regain tracking. Driver must brake or 
correct steering to complete the test. 

 

ACC Cut-Out & Reveal, AEB Obstacle, Lane Obstruction, Lane Shift: Results Key  
Value Description Example 

5 No driver intervention needed Test vehicle adjusts following distance/brakes according 
to lead vehicle speed or obstacle in the driving path. 

4 Driver required to input lateral control or braking to 
avoid collision  
Car performed late/hard self-braking  
Warning lights and sounds  

Test vehicle senses obstacle and exhibits a hard brake 
pulse to drastically reduce speed before impact. 
However, the brake pulse is not enough to bring the 
vehicle to a complete stop, requiring the test vehicle 
driver to swerve or brake.  

3 Driver required to input lateral control or braking to 
avoid collision 
Car performed mild self-braking  
Warning lights or sounds  

Test vehicle senses obstacle and reduces speed but does 
not come to a full stop. Driver must swerve or brake to 
avoid collision with the soft target.  

2 Warning lights or sounds The test vehicle emits an alert that there is an obstacle in 
the driving path but does not take any sort of action to 
avoid or mitigate a collision with the soft target.  

1 No car response to event Test vehicle does not brake nor warn driver that an 
obstacle is in the driving path. Driver must swerve or 
brake hard to avoid collision with the soft target.  

 

 

 

 

D. Raw Data 
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Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 Vehicle 7 

ACC Curve 
       

Overall 2.7 2.84 2.6 2.6 2.72 2.83 2.81 
   Curve Degree: 101 ft. 2 2.77 2 2.08 2.18 2.33 2.25 
   Curve Degree: 255 ft. 3 2.92 2.67 2.83 3 3 3 
   Curve Degree: 230 ft. 2.75 2.83 2.75 3 3 3 3 
   Curve Degree: 204 ft. 2.83 2.83 3 2.5 3 3 3 
   Long Headway 2.64 2.72 2.46 2.5 2.67 2.75 2.79 
   Medium Headway 2.77 2.96 2.75 2.71 2.75 2.92 2.83 
ACC Cut-In 

       

Overall 2.13 2.54 2.34 1.46 1.11 3 3 
   Cut-In Speed: 30 mph 2.25 2.5 1.5 1.75 1 3 3 
   Cut-In Speed: 40 mph 2.13 2.38 2.63 1.38 1.33 3 3 
   Cut-In Speed: 50 mph 2 2.75 3 1.25 1 3 3 
   Long Headway 2.25 2.42 2.42 1.5 1.17 3 3 
   Medium Headway 2 2.67 2.33 1.42 1 3 3 
ACC Cut-Out & Reveal 

       

Overall 5 3.8 4.67 3.54 4.75 5 4.56 
   Traveling speed: 20 mph, Revealed   
vehicle speed: 15 mph 

5 5 5 4.5 5 5 5 

   Traveling speed: 20 mph, Revealed 
vehicle speed: 10 mph 

5 3.5 5 5 5 5 5 

   Traveling speed: 20 mph, Revealed 
vehicle speed: 0 mph 

5 3.5 5 2.25 5 5 5 

   Traveling speed: 30 mph, Revealed 
vehicle speed: 0 mph 

5 3.5 3 2 3.5 5 3.29 

   Traveling speed: 40 mph, Revealed 
vehicle speed: 15 mph 

5 4.25 5 5 5 5 5 

   Traveling speed: 40 mph, Revealed 
vehicle speed: 10 mph 

5 3.2 5 2.5 5 5 5 

   Long Headway 5 5 4.67 3.58 5 5 4.89 
   Medium Headway 5 2.69 4.67 3.5 4.5 5 4.23 
ACC Stop & Go 

       

Overall 2.88 3 2.94 2 3 3 3 
   Long Headway 2.75 3 2.88 2 3 3 3 
   Medium Headway 3 3 3 2 3 3 3 
AEB Obstacle 

       

Overall 2.7 2.17 3.3 1.73 3.53 1.13 2.63 
   Target: Static, Foam Car 2.33 1.33 4.67 4.33 3 1.57 1 
   Target: Static, Large Pedestrian 2.83 2.29 2.33 1.33 3.63 1 3 
   Target: Dynamic, Large Pedestrian 3 2.83 2.83 1 3.57 1 3.67 
   Target: Static, Small Pedestrian 3.17 2.5 3.33 1 4 1 1.83 
   Target: Dynamic, Small Pedestrian 2.17 2.29 3.33 1 4 1 3.67 
   Approach Speed: 25 mph 3.4 2.18 3.3 1.7 3.54 1.1 3.4 
   Approach Speed: 35 mph 3.3 2.43 3.4 1.8 3.5 1 2.5 
   Approach Speed: 45 mph 1.4 1.8 3.2 1.7 3.57 1.27 2 
Lane Obstruction 

       

Overall 2.64 1 1.83 1.7 2.07 3.4 1.87 
   Obstacle: Barrel Cone 1 1 1 1 1 1 1 
   Obstacle: Foam Car 4.28 1 2.67 2.17 2.67 5 2.44 
Lane Shift 

       

Overall 2.68 1.13 1 1.11 1 1 1 
   Speed: 25 mph, Shift Type: Full 2 1.08 1 1 1 1 1 
   Speed: 25 mph, Shift Type: Half 4.43 1.23 1 1.33 1 1 1 
   Speed: 35 mph, Shift Type: Full 2 1 1 1 1 1 1 
   Speed: 45 mph, Shift Type: Half 2 1 1 1 1 1 1 
   Long Headway 2.67 1.09 1 1 1 1 1 
   Medium Headway 2.63 1.07 1 1.17 1 1 1 
   Short Headway 2.75 1.07 1 1.17 1 1 1 
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E. Statistical Results 

In the analysis of variance (ANOVA), if the value of F was greater than the value of Fcrit, it indicated a statistically 

significant difference in performance scores. A t-test was then conducted on these subsets to identify which variable 

caused this significant difference. If the p-value (two-tailed) was less than 0.05, it indicated a statistically significant 

difference. All significant values are highlighted below. 

ACC Curve 

ANOVA: 
Curve Angle 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 2.37 3 0.788 22.9 3.17E-07 3.01 
 

T-tests: Two-Sample Assuming Equal Variances 

Curve Angle 1 Curve Angle 2 Resulting P-value (two-tailed) from T-
test 

108 ft. 301 ft. 5.15E-05 
108 ft. 295 ft. 5.80E-05 
108 ft. 205 ft. 0.0002 
301 ft. 295 ft. 0.850 
301 ft. 205 ft. 0.670 
295 ft. 205 ft. 0.778 

 

ANOVA: 
Headway 
Setting 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 0.096 1 0.096 7.83 0.016 4.75 
 

 

T-tests: Two-Sample Assuming Equal Variances 

Headway Setting 1 Headway Setting 2 Resulting P-value (two-tailed) from T-
test 

Long Medium 0.016 
 

ACC Cut-In 

ANOVA: Event 
Speed 

      

Source of Variation SS df MS F P-value F crit 

Between Groups 0.083 2 0.042 0.068 0.934 3.56 

 

ANOVA: Headway 
Setting 

      

Source of Variation SS df MS F P-value F crit 

Between Groups 0.008 1 0.008 0.015 0.904 4.75 
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ACC Cut-Out & Reveal 

ANOVA: 
Revealed Vehicle 

Speed 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 8.62 5 1.72 2.62 0.04 2.48 

 

T-tests: Two-Sample Assuming Equal Variances 

Traveling Speed/Revealed Speed 
Combination 1 

Traveling Speed/Revealed Speed 
Combination 2 

Resulting P-value (two-tailed) from T-
test 

20 mph/15 mph 20 mph/10 mph 0.539 
20 mph/15 mph 20 mph/0 mph 0.227 
20 mph/15 mph 30 mph/0 mph 0.008 
20 mph/15 mph 40 mph/15 mph 0.786 
20 mph/15 mph 40 mph/10 mph 0.210 
20 mph/10 mph 20 mph/0 mph 0.417 
20 mph/10 mph 30 mph/0 mph 0.025 
20 mph/10 mph 40 mph/15 mph 0.663 
20 mph/0 mph 30 mph/0 mph 0.204 

 

ANOVA: 
Headway Setting 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 0.900 1 0.900 1.80 0.205 4.75 
 

ACC Stop & Go 

ANOVA: Headway 
Setting 

      

Source of Variation SS df MS F P-value F crit 

Between Groups 0.010 1 0.010 0.070 0.795 4.75 

 

AEB Obstacle 

ANOVA: 
Obstacle Type 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 0.320 4 0.080 0.056 0.994 2.69 
 

ANOVA: Event 
Speed 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 1.09 2 0.547 0.621 0.548 3.56 
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Lane Obstruction 

ANOVA: 
Obstacle Type 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 12.5 1 12.5 13.9 0.003 4.75 

 

ANOVA: 
Headway Setting 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 0.590 2 0.295 0.144 0.867 3.55 

 

ANOVA: Event 
Speed 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 1.63 2 0.817 0.389 0.684 3.55 
 

Lane Shift 

ANOVA: Shift 
Type 

      

Source of 
Variation 

SS df MS F P-value F crit 

Between Groups 0.899 3 0.300 0.566 0.643 3.03 
 

ANOVA: 
Headway Setting 

      

Source of Variation SS df MS F P-value F crit 

Between Groups 0.004 2 0.002 0.005 0.995 3.55 

 


